Set 2: State-spaces and Uninformed Search

ICS 271 Fall 2014 Kalev Kask

Problem-Solving Agents

- Intelligent agents can solve problems by searching a state-space
- State-space Model
- the agent's model of the world
- usually a set of discrete states
- e.g., in driving, the states in the model could be towns/cities
- Goal State(s)
- a goal is defined as a desirable state for an agent
- there may be many states which satisfy the goal
- e.g., drive to a town with a ski-resort
- or just one state which satisfies the goal
- e.g., drive to Mammoth
- Operators
- operators are legal actions which the agent can take to move from one state to another

Example: Romania

Example: Romania

- On holiday in Romania; currently in Arad.
- Flight leaves tomorrow from Bucharest
- Formulate goal:
- be in Bucharest
- Formulate problem:
- states: various cities
- actions: drive between cities
- Find solution:
- sequence of actions (cities), e.g., Arad, Sibiu, Fagaras, Bucharest

Problem Types

- Static / Dynamic

Previous problem was static: no attention to changes in environment

- Observable / Partially Observable / Unobservable Previous problem was observable: it knew its initial state.
- Deterministic / Stochastic

Previous problem was deterministic: no new percepts
were necessary, we can predict the future perfectly

- Discrete / continuous

Previous problem was discrete: we can enumerate all possibilities

State-Space Problem Formulation

A problem is defined by five items:
initial state e.g., "at Arad"
actions or successor function $S(x)=$ set of action-state pairs

- e.g., $S($ Arad $)=\{\langle$ Arad \rightarrow Zerind, Zerind $\rangle, \ldots\}$
transition function - maps action X state \rightarrow state
goal test, (or goal state)
e.g., $x=$ "at Bucharest", Checkmate(x)
path cost (additive)
- e.g., sum of distances, number of actions executed, etc.
- $c(x, a, y)$ is the step cost, assumed to be ≥ 0

A solution is a sequence of actions leading from the initial state to a goal state

State-Space Problem Formulation

- A statement of a Search problem has 5 components
- 1. A start state S
- 2. A set of operators/actions which allow one to get from one state to another
- 3. transition function
- 4. A set of possible goal states G, or ways to test for goal states
- 5. Cost path
- A solution consists of
- a sequence of operators which transform S into a goal state G
- Representing real problems in a State-Space search framework
- may be many ways to represent states and operators
- key idea: represent only the relevant aspects of the problem (abstraction)

Abstraction/Modeling

Process of removing irrelevant detail to create an abstract representation: "'high-level", ignores irrelevant details

- Definition of Abstraction:
- Navigation Example: how do we define states and operators?
- First step is to abstract "the big picture"
- i.e., solve a map problem
- nodes = cities, links = freeways/roads (a high-level description)
- this description is an abstraction of the real problem
- Can later worry about details like freeway onramps, refueling, etc
- Abstraction is critical for automated problem solving
- must create an approximate, simplified, model of the world for the computer to deal with: real-world is too detailed to model exactly
- good abstractions retain all important details

Robot block world

- Given a set of blocks in a certain configuration,
- Move the blocks into a goal configuration.
- Example:
$-(c, b, a) \rightarrow(b, c, a)$

Move (x,y)

Operator Description

Effects of Moving a Block

The State-Space Graph

- Problem formulation:
- Give an abstract description of states, operators, initial state and goal state.
- Graphs:
- vertices, edges(arcs), directed arcs, paths

State-space:

1. A set of states
2. A set of "operators"/transitions
3. A start state S
4. A set of possible goal states
5. Cost path

- State-space graphs:
- States are vertices
- operators are directed arcs
- solution is a path from start to goal
- Problem solving activity:
- Generate a part of the search space that contains a solution

The Traveling Salesperson Problem

- Find the shortest tour that visits all cities without visiting any city twice and return to starting point.
- State:
- sequence of cities visited
- $S_{0}=A$

The Traveling Salesperson Problem

- Find the shortest tour that visits all cities without visiting any city twice and return to starting point.
- State: sequence of cities visited
- $\mathrm{S}_{0}=\mathrm{A}$
- Solution = a complete tour

Transition model

$$
\{a, c, d\} \nprec\{(a, c, d, x) \mid X \notin a, c, d\}
$$

Example: 8-queen problem

Example: 8-Queens

- states? -any arrangement of $\mathrm{n}<=8$ queens -or arrangements of $\mathrm{n}<=8$ queens in leftmost n columns, 1 per column, such that no queen attacks any other.
- initial state? no queens on the board
- actions? -add queen to any empty column
-or add queen to leftmost empty column such that it is not attacked by other queens.
- goal test? 8 queens on the board, none attacked.
- path cost? 1 per move

The Sliding Tile Problem

2	8	3
1	6	4
7	5	

1	2	3
8	4	
7	6	5

Figure 8.1
Start and Goal Configurations for the Eight-Puzzle

$$
\begin{array}{ll}
\text { move } x, \operatorname{loc} y, l o c z) & \text { Up } \\
& \text { Down } \\
& \text { Left } \\
& \text { Right }
\end{array}
$$

The "8-Puzzle" Problem

Start State

1	2	3
4		6
7	5	8

1	2	3
4	5	6
7		8
	\downarrow	
1	2	3
4	5	6
7	8	

Goal State

Example: robotic assemblv

- states?: real-valued coordinates of robot joint angles parts of the object to be assembled
- actions?: continuous motions of robot joints
- goal test?: complete assembly
- path cost?: time to execute

Formulating Problems; Another Angle

- Problem types
- Satisfying: 8-queen
- Optimizing: Traveling salesperson
- Goal types
- board configuration
- sequence of moves
- A strategy (contingency plan)
- Satisfying leads to optimizing since "small is quick"
- For traveling salesperson
- satisfying easy, optimizing hard
- Semi-optimizing:
- Find a good solution
- In Russel and Norvig:
- single-state, multiple states, contingency plans, exploration problems

Searching the State Space

- States, operators, control strategies
- The search space graph is implicit
- The control strategy generates a small search tree.
- Systematic search
- Do not leave any stone unturned
- Efficiency
- Do not turn any stone more than once

Tree search example

Tree search example

Tree search example

function Tree-SEARCH (problem, strategy) returns a solution, or failure initialize the search tree using the initial state of problem loop do
if there are no candidates for expansion then return failure choose a leaf node for expansion according to strategy
if the node contains a goal state then return the corresponding solution else expand the node and add the resulting nodes to the search tree

State-Space Graph of the 8 Puzzle Problem

Figure 3.6 State space of the 8-puzzle generated by "move blank" operations.

Implementation

- States vs Nodes
- A state is a (representation of) a physical configuration
- A node is a data structure constituting part of a search tree contains info such as: state, parent node, action, path cost $g(x)$, depth

- The Expand function creates new nodes, filling in the various fields and using the SuccessorFn of the problem to create the corresponding states.
- Queue managing frontier :
- FIFO
- LIFO
- priority

Tree-Search vs Graph-Search

- Tree-search(problem), returns a solution or failure
- Frontier \leftarrow initial state
- Loop do
- If frontier is empty return failure
- Choose a leaf node and remove from frontier
- If the node is a goal, return the corresponding solution
- Expand the chosen node, adding its children to the frontier
- Graph-search(problem), returns a solution or failure
- Frontier \leftarrow initial state, explored $\leftarrow e m p t y$
- Loop do
- If frontier is empty return failure
- Choose a leaf node and remove from frontier
- If the node is a goal, return the corresponding solution.
- Add the node to the explored.
- Expand the chosen node, adding its children to the frontier, only if not in frontier or explored set

Tree-Search vs. Graph-Search

- Example : Assemble 5 objects $\{\mathbf{a}, \mathbf{b}, \mathbf{c}, \mathbf{d}, \mathbf{e}\}$
- A state is a bit-vector (length 5), $1=o b j e c t ~ i n ~ a s s e m b l y ~$
- $11010=\mathbf{a}, \mathbf{b}, \mathrm{d}$ in assembly, c, e not
- State space
- number of states $2^{5}=32$
- number of edges $\left(2^{5}\right) \cdot 5 \cdot 1 / 2=80$
- Tree-search space
- number of nodes $5!=120$
- State can be reached in multiple ways
- 11010 can be reached $\mathbf{a}+\mathbf{b}+\mathbf{d}$ or $\mathbf{a}+\mathbf{d}+\mathbf{b}$ etc.
- Graph-search :
- three kinds of nodes : unexplored, frontier, explored
- before adding a node, check if a state is in frontier or explored set

Graph-Search

271-fall $2014^{(a)}$

(b)

(c)

Why Search Can be Difficult

- At the start of the search, the search algorithm does not know
- the size of the tree
- the shape of the tree
- the depth of the goal states
- How big can a search tree be?
- say there is a constant branching factor b
- and one goal exists at depth d
- search tree which includes a goal can have
b^{d} different branches in the tree (worst case)
- Examples:
$-b=2, d=10: \quad b^{d}=2^{10}=1024$
$-\quad b=10, d=10: \quad b^{d}=10^{10}=10,000,000,000$

Searching the Search Space

- Uninformed (Blind) search
- Breadth-first
- Uniform-Cost first
- Depth-first
- Iterative deepening depth-first
- Bidirectional
- Depth-First Branch and Bound
- Informed Heuristic search
- Greedy search, hill climbing, Heuristics
- Important concepts:
- Completeness
- Time complexity
- Space complexity
- Quality of solution

Breadth-First Search

- Expand shallowest unexpanded node
- Frontier: nodes waiting in a queue to be explored, also called OPEN
- Implementation:
- frontier is a first-in-first-out (FIFO) queue, i.e., new successors go at end of the queue.

Is A a goal state?

Breadth-First Search

- Expand shallowest unexpanded node
- Implementation:
- frontier is a FIFO queue, i.e., new successors go at end

Expand:
frontier $=[B, C]$
Is B a goal state?

Breadth-First Search

- Expand shallowest unexpanded node
- Implementation:
- frontier is a FIFO queue, i.e., new successors go at end

Expand: frontier $=[C, D, E]$

Is C a goal state?

Breadth-First Search

- Expand shallowest unexpanded node
- Implementation:
- frontier is a FIFO queue, i.e., new successors go at end

Expand:
frontier=[D,E,F,G]
Is D a goal state?

Breadth-First Search

Actually, in BFS we can check if a node is a goal node when it is generated (rather than expanded)

Breadth-First-Search (*)

OPEN $=$ frontier, CLOSED $=$ explored

- 1. Put the start node s on OPEN
- 2. If OPEN is empty exit with failure.
- 3. Remove the first node n from OPEN and place it on CLOSED.
- 4. Expand n, generating all its successors.
- If child is not in CLOSED or OPEN, then
- If child is not a goal, then put them at the end of OPEN in some order.
- 5. If n is a goal node, exit successfully with the solution obtained by tracing back pointers from n to s.
- Go to step 2.
* This is graph-search

Example: Map Navigation

$\mathrm{S}=$ start, $\mathrm{G}=$ goal, other nodes $=$ intermediate states, links = legal transitions

Initial BFS Search Tree

Note: this is the search tree at some particular point in in the search.

Complexity of Breadth-First Search

- Time Complexity
- assume (worst case) that there is 1 goal leaf at the RHS
- so BFS will expand all nodes

$$
\begin{aligned}
& =1+b+b^{2}+\quad \cdots \cdots \cdots+b^{d} \\
& =\mathbf{O}\left(b^{d}\right)
\end{aligned}
$$

- Space Complexity
- how many nodes can be in the queue (worst-case)?
- at depth d there are b^{d} unexpanded nodes in the $Q=\mathbf{O}\left(\mathbf{b}^{d}\right)$

Examples of Time and Memory Requirements for Breadth-First Search

Depth of Solution	Nodes Expanded	Time	Memory
0	1	1 millisecond	100 bytes
2	111	0.1 seconds	11 kbytes
4	11,111	11 seconds	1 megabyte
8	10^{8}	31 hours	11 giabytes
12	10^{12}	35 years	111 terabytes

Assuming $\mathrm{b}=10,1000$ nodes $/ \mathrm{sec}, 100$ bytes/node

Breadth-First Search (BFS) Properties

- Solution Length: optimal
- Expand each node once (can check for duplicates, performs graph-search)
- Search Time: $O\left(b^{d}\right)$
- Memory Required: $O\left(b^{d}\right)$
- Drawback: requires exponential space

Uniform Cost Search

- Expand lowest-cost OPEN node ($g(n)$)
- In BFS $g(n)=\operatorname{depth}(n)$

Figure 3.13 A route-finding problem. (a) The state space, showing the cost for each operator. (b) Progression of the search. Each node is labelled with $g(n)$. At the next step, the goal node with $g=10$ will be selected.

- Requirement

- $g($ successor $)(n)) \geq g(n)$

Uniform cost search

1. Put the start node s on OPEN
2. If OPEN is empty exit with failure.
3. Remove the first node n from OPEN and place it on CLOSED.
4. If n is a goal node, exit successfully with the solution obtained by tracing back pointers from n to s.
5. Otherwise, expand n, generating all its successors attach to them pointers back to n, and put them in OPEN in order of shortest cost
6. Go to step 2.

DFS Branch and Bound

At step 4: compute the cost of the solution found and updlate the upper bound \mathbf{U}. at step 5: expand n, generating all its successors attach to them pointers back to n, and put on top of OPEN.
Gompute cost of partial path to node and prune if larger than U.

Depth-First Search

- Expand deepest unexpanded node
- Implementation:
- frontier = Last In First Out (LIFO) queue, i.e., put successors at front

Is A a goal state?

Depth-first search

- Expand deepest unexpanded node
- Implementation:
- frontier $=$ LIFO queue, i.e., put successors at front queue $=[B, C]$

Is B a goal state?

Depth-first search

- Expand deepest unexpanded node
- Implementation:
- frontier $=$ LIFO queue, i.e., put successors at front
queue=[D,E,C]
queue=[D,E,C]
Is D = goal state?

Depth-first search

- Expand deepest unexpanded node
- Implementation:
- frontier $=$ LIFO queue, i.e., put successors at front queue $=[\mathrm{H}, \mathrm{I}, \mathrm{E}, \mathrm{C}]$

Is $\mathrm{H}=$ goal state?

Depth-first search

- Expand deepest unexpanded node
- Implementation:
- frontier $=$ LIFO queue, i.e., put successors at front
queue $=[\mathrm{I}, \mathrm{E}, \mathrm{C}]$
Is I = goal state?

Depth-first search

- Expand deepest unexpanded node
- Implementation:
- frontier $=$ LIFO queue, i.e., put successors at front

Depth-first search

- Expand deepest unexpanded node
- Implementation:
- frontier $=$ LIFO queue, i.e., put successors at front queue $=[\mathrm{J}, \mathrm{K}, \mathrm{C}]$

Is J = goal state?

Depth-first search

- Expand deepest unexpanded node
- Implementation:
- frontier $=$ LIFO queue, i.e., put successors at front queue $=[K, C]$

Is $\mathrm{K}=$ goal state?

Depth-first search

- Expand deepest unexpanded node
- Implementation:
- frontier $=$ LIFO queue, i.e., put successors at front

```
queue=[C]
```

Is C = goal state?

Depth-first search

- Expand deepest unexpanded node
- Implementation:
- frontier $=$ LIFO queue, i.e., put successors at front

$$
\text { queue }=[\mathrm{F}, \mathrm{G}]
$$

Is $\mathrm{F}=$ goal state?

Depth-first search

- Expand deepest unexpanded node
- Implementation:
- frontier = LIFO queue, i.e., put successors at front queue $=[\mathrm{L}, \mathrm{M}, \mathrm{G}]$

Is $L=$ goal state?

Depth-first search

- Expand deepest unexpanded node
- Implementation:
- frontier $=$ LIFO queue, i.e., put successors at front

Depth-First Search (DFS)

Here, (if tree-search) then to avoid infinite depth (in case of finite state-space graph) assume we don't expand any child node which appears already in the path from the root S to the parent. (Again, one could use other strategies)

Depth-First Search

(a)

(b)

(c)

Generation of the First Few Nodes in a Depth-First Search

The Graph When the Goal Is Reached in Depth-First Search

Depth-First-Search (*)

1. Put the start node s on OPEN

2. If OPEN is empty exit with failure.
3. Remove the first node n from OPEN.
4. If n is a goal node, exit successfully with the solution obtained by tracing back pointers from n to s.
5. Otherwise, expand n, generating all its successors (check for self-loops)attach to them pointers back to n, and put them at the top of OPEN in some order.
6. Go to step 2.
*search the tree search-space (but avoid self-loops)
** the default assumption is that DFS searches the underlying search-tree

Complexity of Depth-First Search?

- Time Complexity
- assume d is deepest path in the search space
- assume (worst case) that there is 1 goal leaf at the RHS
- so DFS will expand all nodes

$$
\begin{aligned}
& =1+b+b^{2}+\ldots \ldots \ldots+b^{d} \\
& =\mathbf{O}\left(b^{d}\right)
\end{aligned}
$$

- Space Complexity (for treesearch)
- how many nodes can be in the queue (worst-case)?
- O(bd) if deepest node at depth d

Example, Diamond Networks graph-search vs tree-search (BFS vs DFS)

- Graph-search \& BFS
- Tree-search \& DFS

Depth-First tree-search Properties

- Non-optimal solution path
- Incomplete unless there is a depth bound
- (we will assume depth-limited DF-search)
- Re-expansion of nodes (when the state-space is a graph)
- Exponential time
- Linear space (for tree-search)

Comparing DFS and BFS

- BFS optimal, DFS is not
- Time Complexity worse-case is the same, but
- In the worst-case BFS is always better than DFS
- Sometime, on the average DFS is better if:
- many goals, no loops and no infinite paths
- BFS is much worse memory-wise
- DFS can be linear space
- BFS may store the whole search space.
- In general
- BFS is better if goal is not deep, if long paths, if many loops, if small search space
- DFS is better if many goals, not many loops
- DFS is much better in terms of memory

Iterative-Deepening Search (DFS)

- Every iteration is a DFS with a depth cutoff.

Iterative deepening (ID)

1. $\quad i=1$
2. While no solution, do
3. DFS from initial state S_{0} with cutoff i
4. If found goal, stop and return solution, else, increment cutoff

Comments:

- IDS implements BFS with DFS
- Only one path in memory
- BFS at step i may need to keep 2^{i} nodes in OPEN

Iterative deepening search $L=0$

Limit $=0$
(-1)

Iterative deepening search $L=1$

Iterative deepening search $L=2$

Iterative Deepening Search $L=3$

Iterative deepening search

Depth bound $=1$

Depth bound $=2$

Depth bound $=3$

Depth bound $=4$

Stages in Iterative-Deepening Search

Iterative Deepening (DFS)

- Time:

$$
T(n)=\sum_{j=1}^{n} \frac{b^{j+1}-1}{b-1}=\frac{b^{n+2}}{(b-1)^{2}}=O\left(b^{n}\right)
$$

- BFS time is $O\left(b^{n}\right)$, b is the branching degree - IDS is asymptotically like BFS,
o For $b=10 \quad d=5 \quad d=c u t-o f f$
o DFS $=1+10+100, \ldots,=111,111$
- IDS = 123,456
- Ratio is $\frac{b}{b-1}$

Summary on IDS

- A useful practical method
- combines
- guarantee of finding an optimal solution if one exists (as in BFS)
- space efficiency, O(bd) of DFS
- But still has problems with loops like DFS

Bidirectionalsearch

- Idea
- simultaneously search forward from S and backwards from G
- stop when both "meet in the middle"
- need to keep track of the intersection of 2 open sets of nodes
- What does searching backwards from G mean
- need a way to specify the predecessors of G
- this can be difficult,
- e.g., predecessors of checkmate in chess?
- what if there are multiple goal states?
- what if there is only a goal test, no explicit list?
- Complexity
- time complexity is best: $\mathrm{O}\left(2 \mathrm{~b}^{(\mathrm{d} / 2)}\right)=\mathrm{O}\left(\mathrm{b}^{(\mathrm{d} / 2)}\right)$
- memory complexity is the same

Bi-Directional Search

Fig. 2.10 Bidirectional and unidirectional breadth-first searches.

Comparison of Algorithms

Criterion	Breadth- First	Uniform- Cost	Depth- First	Depth- Limited	Iterative Deepening	Bidirectional (if applicable)
Time	b^{d}	b^{d}	b^{m}	b^{l}	b^{d}	$b^{d / 2}$
Space	b^{d}	b^{d}	$b m$	$b l$	$b d$	$b^{d / 2}$
Optimal?	Yes	Yes	No	No	Yes	Yes
Complete?	Yes	Yes	No	Yes, if $l \geq d$	Yes	Yes

Figure 3.18 Evaluation of search strategies. b is the branching factor; d is the depth of solution; m is the maximum depth of the search tree; l is the depth limit.

Summary

- A review of search
- a search space consists of nodes and operators: it is a tree/graph
- There are various strategies for "uninformed search"
- breadth-first
- depth-first
- iterative deepening
- bidirectional search
- Uniform cost search
- Depth-first branch and bound
- Repeated states can lead to infinitely large search trees
- we looked at methods for detecting repeated states
- All of the search techniques so far are "blind" in that they do not look at how far away the goal may be: next we will look at informed or heuristic search, which directly tries to minimize the distance to the goal.

